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Abstract 

Landslides can have significant and pervasive impacts to life and property around the world. Several attempts have 

been made to predict the geographic distribution of landslide activity at continental and global scales. These efforts 

shared common traits such as resolution, modeling approach, and explanatory variables. The lessons learned from 

prior research have been applied to build a new global susceptibility map from existing and previously unavailable 

data. Data on slope, faults, geology, forest loss, and road networks were combined using a heuristic fuzzy approach. 

The map was evaluated with a Global Landslide Catalog developed at the National Aeronautics and Space 

Administration, as well as several local landslide inventories. Comparisons to similar susceptibility maps suggest 

that the subjective methods commonly used at this scale are, for the most part, reproducible. However, comparisons 

of landslide susceptibility across spatial scales must take into account the susceptibility of the local subset relative to 

the larger study area. The new global landslide susceptibility map is intended for use in disaster planning, situational 

awareness, and for incorporation into global decision support systems.  
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1. Introduction 1 

Landslides cause thousands of fatalities annually (Petley 2012; Kirschbaum et al. 2015b; Haque et al. 2016), as well 2 

as substantial property damage. The true risk may be higher than that observed in recent landslide catalogs due to 3 

the fact that most casualties are caused by rare catastrophic events (Petley et al. 2005). The first step in 4 

characterizing the potential impact of landslides (defined in this paper as any mass movements, including shallow 5 

debris flows, rock falls, and deep-seated rotational slides) is to identify where these events have occurred in the past. 6 

An ideal landslide inventory would provide both spatial and temporal information on all previous landslides over a 7 

certain domain. However, most inventories are limited to a short time period that may not fully reflect the 8 

probability of catastrophic landslides. In addition, many landslides go unreported. Therefore, it is helpful to consider 9 

not only the historical record of landslide occurrences, but also account for general principles of slope stability when 10 

predicting the spatial patterns of future landslide events.  11 

Small-scale (defined in this paper as less than 1:1,000,000 scale) landslide susceptibility maps suffer from four main 12 

problems: 1) the lack of comprehensive and unbiased landslide inventories; 2) the coarse resolution or absence of 13 

data inputs; 3) regional differences in the importance of causative factors; and 4) the dearth of expertise on 14 

landscape processes across a vast region. This work addresses several of these limitations through a heuristic 15 

approach to represent relative landslide susceptibility at the global scale. 16 

There have been several projects to represent susceptibility at continental or global scales (Table 1). The Landslide 17 

Overview Map of the Conterminous United States (Radbruch-Hall et al. 1982) was produced prior to the widespread 18 

use of digital elevation models (DEM), an input seen in nearly all later research. The European and Indian maps 19 

(BMTPC and CDMM 2003; Günther et al. 2014) represent collective efforts in which multiple local datasets were 20 

assembled into a continental view of landslide susceptibility. In contrast, China and the Caribbean region were 21 

analyzed as single units (Liu et al. 2013; Kirschbaum et al. 2015a). No variable or method was adopted by all 22 

authors. The general trend over time is towards “objective” and away from “subjective” methods. Despite covering 23 

vast areas, all but one of the maps were developed with reference to a relatively small landslide inventory for 24 

validation. Given this challenge, it is not surprising that most methodologies rely on heuristic methods. Slope and 25 

geological classification were used most often, while land cover and seismicity were each used in half the studies. 26 

Classification and ranking of slope data was fairly consistent amongst the studies. This work adopts the standard of 27 

practice in previous research at continental and global scales and applies it to previously unavailable datasets with a 28 

flexible fuzzy method. The resulting landslide susceptibility map forms one component of a global decision support 29 

system that identifies landslide potential in nearly real-time, in concert with satellite-based precipitation estimates. 30 

  31 
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Table 1: Summary of selected landslide susceptibility maps. In general, previous researchers used heuristic methods to produce 32 
maps with resolutions of approximately one kilometer (30 arcseconds). Some variables, such as slope and geology, were 33 
commonly used, and represent a rough consensus on the importance of these factors. 34 

Study area USA USA Europe India China Indonesia Caribbean World World 

T
o
ta

l 

Reference 

Radbruch-

Hall et al. 

1982 

Brabb et al. 

1999 

Günther et 

al. 2014 

BMTPC and 

CDMM 

2003 

Liu et al. 

2013 

Cepeda 

2010 

Kirschbaum 

et al. 2015 

Nadim et al. 

2006 

Hong et al. 

2007 

Landslide events Unknown 24,000 102,000 10 1,200 97 318 3,000 555 

Resolution (m) N/A 950 1,000 N/A 1,000 1,000 1,000 1,000 27,800 

Methodology 
Expert 

opinion 

Expert 

opinion 

Analytical 

hierarchy 

process & 

Frequency 

ratio 

Weighted 

linear 

combination 

Neural 

network 

Weighted 

linear 

combination 

Fuzzy 

overlay 

Weighted 

linear 

combination 

Weighted 

linear 

combination 

Slope  X X X X X X X X 8 

Aspect     X     1 

Curvature     X     1 

Relief   X       1 

Elevation     X    X 2 

Geology X  X X X X  X  6 

Geomorphological 

classification 
   X      1 

Soil type or texture     X  X  X 3 

Soil moisture      X  X  2 

Land cover/NDVI   X X X X   X 5 

Distance to 

stream/Drainage 

density 

    X    X 2 

Köppen climate 

classification 
  X       1 

Seismicity    X X X X X  5 

Precipitation    X  X  X  3 

Road presence       X   1 

2. Data 35 

In previous studies (Table 1), slope, geology, land cover, and tectonic features were used most frequently to develop 36 

most of the small-scale landslide susceptibility maps. The same variables were considered in the current work, but 37 

with different data sources (Table 2). Information on roads was also incorporated due to the association between 38 

roads and increased landslide rates (Larsen and Parks 1997; Petley et al. 2007; Kirschbaum et al. 2015b). Global or 39 

nearly global data is available for all of these variables, often without charge.  40 

  41 
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Table 2: The global landslide susceptibility map was created by combining information from four principal sources of 42 
information for five explanatory variables: slope, distance to fault, geological classification, presence of roads, and forest loss.  43 

Data Type Data Set 
Resolution/ 

Accuracy 

Explanatory 

Variable 
Extent Source and Details 

Elevation 

Viewfinder 

Panoramas Digital 

Elevation Data 

3 arcseconds 

(~90 m) 
Slope 

84 degrees 

N - 72 

degrees S 

(de Ferranti 2014a) 

derived from 3-arc-

second SRTM DEM 

and several other 

sources. 

Faults and 

Geologic 

Regions 

Geological Map 

of the World, 3rd 

edition 

1:50,000,000 

Distance to Fault 

zones and 

geological 

classification 

Global (Bouysse 2009) 

Roads OpenStreetMap Variable 
Presence of 

roads 
Global 

(OpenStreetMap 

contributors 2015) Data 

represents OSM on 

June 4th, 2015. 

Forest 

Cover 

Global Forest 

Change 2000–

2013 

30 

meters/99.6% 
Forest Loss 

80 degrees 

N - 60 

degrees S 

(Hansen et al. 2013) 

 44 

2.1 Topography 45 

There are relatively few sources of topographic information with global coverage. One of the best is the Shuttle 46 

Radar Topography Mission (SRTM). This dataset was initially released at a 3 arcsecond (approximately 30 meters) 47 

resolution (Rabus et al. 2003), but has been released recently at a resolution of 1 arcsecond (approximately 30 48 

meters) and is available from 60˚ North to 56˚ South. Unfortunately, the Middle East was not available at this 49 

resolution at the time of writing. SRTM data contain substantial voids. Several attempts to address this problem have 50 

been made, including the SRTM 90m Digital Elevation Database v4.1 (Jarvis et al. 2008), Global Land Survey 51 

Digital Elevation Model (USGS 2008) and HydroSHEDS (Lehner et al. 2008). While many of the SRTM void-52 

filling techniques produce reasonably accurate elevations in flat areas, slope and other elevation derivatives can be 53 

severely affected—especially in mountainous terrain. Each product was evaluated by calculating slope over test 54 

areas in the Himalayas and the Sahara (where SRTM voids are common). The best global digital elevation model 55 

(DEM) for the purpose of calculating slope in complex topography was found to be Viewfinder Panoramas (de 56 

Ferranti 2014a). This is attributed to the use of several sources of topographic information in addition to SRTM, 57 

which are described below.  58 

In order to better represent the size and shape of complex topographic features, de Ferranti (2014) reviewed multiple 59 

series of topographic maps, as well as data from SRTM, the Advanced Spaceborne Thermal Emission and 60 

Reflection Radiometer (Hirano et al. 2003), the Ice, Cloud, and land Elevation Satellite (Schutz et al. 2005), and the 61 

RADARSAT Antarctic Mapping Project (Jezek 2002). Landsat imagery was also consulted. Then these data sources 62 

were combined in a manner designed to draw on the advantages of each (de Ferranti 2014b). Typically, SRTM 63 

DEM 1-degree tiles with 3-arcsecond resolution formed the basis for the map. Voids in each tile were filled by the 64 
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most accurate alternative source. The first step in filling voids was to calculate topographic contours from the SRTM 65 

DEM. Next, the contours were connected across the no-data regions by referencing topographic maps, including 66 

spot heights. Then the map was searched for artifacts, which were corrected by hand. Finally, the contours were 67 

converted back to a raster DEM. In some cases, voids were filled directly with data from the ASTER Global DEM 68 

(GDEM), then checked for artifacts. In Europe, most elevations are based on topographic maps or more precise 69 

sources, rather than SRTM data. Unfortunately, the tile-based contouring process seems to have introduced errors 70 

along some tile edges. The specific reason for this behavior is unclear, and the global effect is relatively minor, but it 71 

should be noted. Nevertheless, this process produces a global DEM with far better representation of SRTM no-data 72 

regions than other free elevation datasets. 73 

DEM tiles from Viewfinder Panoramas were converted to slope with R’s raster package (Hijmans 2015), then slopes 74 

were aggregated to the output resolution by selecting the maximum slope value from the collection of pixels. 75 

Maximum slope was chosen to represent the most extreme conditions within each pixel and to ensure that the map 76 

identifies all possibly susceptible areas within the cell. Finally, all tiles were merged into a single map. This slope 77 

map resembles the Global Slope Dataset for Estimation of Landslide Occurrence Resulting from Earthquakes 78 

(Verdin et al. 2007), but with the advantage of increased accuracy at high elevations. In addition, the new slope map 79 

improved the representation of coastal terrain, which should aid decision-making in the British Isles and other 80 

locations where coastal bluff collapse is a major hazard (Figure 1). However, comparison of the slope datasets 81 

revealed less than one degree of difference for most locations. 82 

 83 
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Figure 1: The coastline of the Irish Sea and Scottish Highlands as modeled by A) the maximum values from the 30-arcsecond 84 
Global Slope Dataset for Estimation of Landslide Occurrence Resulting from Earthquakes and B) the maximum slopes 85 
aggregated from the Viewfinder Panoramas DEM. C) To determine the relationship between these layers, the Global Slope 86 
Dataset was subtracted from the new slope map. Purple indicates higher slopes in the new dataset. Brown indicates locations 87 
where the Global Slope Dataset is steeper. Slope values are nearly identical (off-white) in most locations. The primary difference 88 
is the inclusion of many coastal pixels in the newer map. This probably results from the application of a restrictive land mask to 89 
elevation data prior to production of the Global Slope Dataset. Since many landslides in the United Kingdom and around the 90 
world occur at coastal bluffs, inclusion of these pixels may help to balance the concerns of interior and maritime regions.  91 

2.2 Geology 92 

Many previous susceptibility mapping efforts include soil and/or rock types as explanatory variables, since each 93 

material has a unique strength, permeability, and stress history. Unfortunately, most geotechnical properties are not 94 

available on a global basis. In order to represent this factor, the Geological Map of the World (GMW) (Bouysse 95 

2009) was simplified into the five categories described by Nadim et al. (2006) and converted to a raster file with a 96 

resolution of 30 arcseconds (Table 3). The rating was rescaled between 0 and 1 for consistency with other model 97 

inputs. The rationale for these ratings was that younger rocks tend to be less consolidated than older rocks, and for 98 

any given age, sedimentary rocks tend to be weaker than igneous and metamorphic rocks. Nadim et al. also pointed 99 

out that even though lava rocks may be strong, volcanic deposits are often made of interbedded weak materials. In 100 

addition, chemical weathering and alteration often have a strong effect on volcanic materials, leaving landslide-101 

prone soils and rocks (Frolova et al.; Reid et al. 2001).  102 

Table 3: Lithological classification 103 

Material, Age Rating (Nadim et al.) Rescaled Rating 

Water bodies Null 0.1 

Greenland ice cap Unknown 0.1 

Extrusive volcanic rocks, Archean-Paleozoic 1 0.2 

Endogenous rocks, Archean-Paleozoic 1 0.2 

Old sedimentary rocks, Archean-Paleozoic 2 0.4 

Extrusive volcanic rocks, Paleozoic-Mesozoic 2 0.4 

Endogenous rocks, Paleozoic-Mesozoic 2 0.4 

Sedimentary rocks, Paleozoic-Mesozoic 3 0.6 

Extrusive volcanic rocks, Mesozoic 3 0.6 

Endogenous rocks, Mesozoic-Cenozoic 3 0.6 

Sedimentary rocks, Paleozoic-Mesozoic 4 0.8 

Extrusive volcanic rocks, Mesozoic-Cenozoic 4 0.8 

Extrusive volcanic rocks, Cenozoic 5 1.0 

 104 

2.3 Seismicity 105 

Seismicity increases landslide hazard by destabilizing the soil and debris on slopes, introducing additional fracturing 106 

that can allow water to penetrate and more rapidly influence the subsurface, and creating steeper or more marginal 107 
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slopes as a result of seismic shaking and co-seismically triggered landslides (Keefer 1994; Okamoto et al. 2013). In 108 

addition, tectonically active areas may be prone to increased erosion, due to jointing, graben formation, volcanism, 109 

stresses (Scheidegger and Ai 1986), and uplift (Larsen and Montgomery 2012). To describe these effects, vector 110 

representations of major faults were obtained from the GMW. The distance to these faults was calculated to create a 111 

proxy for tectonic activity.  112 

2.4 Forest Loss 113 

Land use is commonly used to explain patterns in landslide susceptibility (Korup and Stolle 2014). However, the 114 

association between specific land cover classes and the probability of landslides is challenging to characterize 115 

globally. While ontological difficulties may be avoided by use of a single global dataset, some error is likely 116 

introduced by grouping disparate biota into a relatively small number of classes. More importantly, there has not 117 

been clear consensus from the research community as to how to weight these classes. Most studies assign high 118 

susceptibility to urban areas and low susceptibility to forested areas, which might reflect the impact of 119 

anthropogenic disturbances on slope stability but could also reflect a bias towards urban areas in landslide 120 

inventories. The relationship between landslide initiation and land cover classes is more ambiguous. Empirically 121 

fitted weights would seem to obviate a research review, but biases in landslide inventories can generate incorrect 122 

associations between specific land cover classes (Steger et al. 2016b), as well as support a false sense of confidence 123 

in the resulting model (Steger et al. 2016a). Finally, it should be noted that land cover is a constantly changing 124 

variable (van Westen et al. 2008). The changes caused by fires, urbanization, etc. are likely to have more predictive 125 

power than the static land cover class itself. For these reasons, land use/land cover was eschewed in favor of forest 126 

loss.  127 

Vegetation contributes to slope stability by binding soil particles together and enhancing evaporation (Sidle et al. 128 

1985; Haigh et al. 1995; Sidle et al. 2006). In a few cases, vegetation may increase hazard, but most slopes are 129 

strengthened by the presence of vegetation and weakened by its loss. To represent this variable, a Landsat-based 130 

global map of forest loss from 2000 to 2013 was evaluated (Hansen et al. 2013). The 30-meter forest loss pixels 131 

were aggregated to a resolution of 30-arcseconds by treating the binary output pixel as “forest loss” if it contained 132 

any 30-meter forest loss pixel. The resulting map represents forest cover change due to many causes, including 133 

timber harvesting, fire, and storms.  134 

2.5 Roads 135 

Roads may increase the frequency of mass wasting events (Haigh et al. 1989; Larsen and Parks 1997). Particularly 136 

in developing countries, roads built into and along steep mountain terrain often serve to destabilize the slope (similar 137 

to a river cut at a slope’s toe), which can increase the frequency of landslides. After visual comparisons with VMAP 138 

Level 0 (NIMA (National Imagery and Mapping Agency) 1993) and gROADS (CIESIN and ITOS 2013), the vector 139 

dataset OpenStreetMap (OSM) (OpenStreetMap contributors 2015) was selected to represent this factor, due its 140 

more comprehensive and accurate coverage. This roadway network was converted to a raster layer at a resolution of 141 

30 arcseconds. Larsen and Parks (1997) observed that landslide scars were far more common within 85 meters of 142 
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roads. While rates remained slightly elevated at greater distances, the effects beyond 100 meters from the road were 143 

less pronounced. Researchers working at the local scale typically classify distance to road by tens or hundreds of 144 

meters when mapping landslide susceptibility (Ayalew and Yamagishi 2005; Weirich and Blesius 2007; Dahal et al. 145 

2008; Regmi et al. 2013; Bhatt et al. 2013; Rubel and Ahmed 2013). With a pixel size of approximately 1 square 146 

kilometer, the current susceptibility map cannot model the effect of road construction with the same specificity as 147 

local studies. Thus, the raster representation of road-related hazards was simplified to the presence or absence of a 148 

highway in any given pixel.  149 

2.6 Landslide Inventories 150 

Landslide inventories from several different events, geographic regions, and methodologies were obtained for 151 

validation of the global landslide susceptibility map (Table 4). Of these, only the Global Landslide Catalog (GLC; 152 

Kirschbaum et al. 2015b) covers the entire study area. The GLC was compiled from media reports, online disaster 153 

databases, and other sources when available, with an emphasis on rainfall-triggered landslides. The database has 154 

reports from 2007 to the present. In order to reduce the effects of spatial error on validation statistics, 1,194 rainfall-155 

triggered landslides with a spatial accuracy of one kilometer or better were selected from a total of 6,790 events in 156 

the complete GLC. The remaining points could be useful for evaluating products with a coarser resolution, such as 157 

landslide susceptibility by state, province or country, but were not used for this analysis. Other inventories were 158 

selected to represent different geographic areas and compilation methodologies (Table 4). Some inventories are 159 

quite large (Guzzetti et al. 1994; DOGAMI 2015), some cover a long time period (Devoli et al. 2007a; Gerencia de 160 

Geología 2012), and some are relatively unbiased but correspond to a single event or observation period (Bucknam 161 

et al. 2001; ICIMOD 2010). In every case, the local inventory contains more landslides per square kilometer than the 162 

GLC, which indicates substantial underreporting at the global scale. Reporting biases and uncertainty in this catalog 163 

have been described in Kirschbaum et al. (2010; 2015).  164 

Table 4: Landslide inventories used for validation of the landslide susceptibility map.  165 

Data Set Number of 

points/polygons 

Geographic 

Extent 

Source 

Landslides Triggered by Hurricane 

Mitch  

11,555 landslide 

initiation points 

Eastern 

Guatemala 

(Bucknam et al. 2001) 

Historical landslides in Nicaragua 19,565 points Nicaragua (Devoli et al. 2007b; Devoli et al. 

2007a) 

Landslide Inventory of El Salvador 129 points El Salvador (Gerencia de Geología 2012) 

Landslide Maps of Utah 2,120 polygons Utah, USA (Elliott and Harty 2010) 
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Statewide Landslide Information 

Database for Oregon, release 3.0 

(SLIDO-3.0) 

12,095 points Oregon, USA (DOGAMI 2015) 

AVI 12,224 points  Italy (Guzzetti et al. 1994) 

Badakhshan Province Inventory 609 polygons Badakhshan, 

Afghanistan 

(Zhang et al. 2015) 

Koshi Inventories 3,407 polygons Koshi River 

Basin 

(ICIMOD 1992; ICIMOD 2010) 

GLC 1,194 points Global (Kirschbaum et al. 2015b) 

 166 

3. Methods 167 

A heuristic fuzzy approach has been taken at the continental (Kirschbaum et al. 2015a), regional (Ahmed et al. 168 

2014), and local scales (Champati ray et al. 2007), but it has not been previously applied at the global scale. Fuzzy 169 

landslide models offer some advantages, which include the ability to combine similar datasets in a nested sequence 170 

prior to the final combination, the ability to use both continuous and discrete inputs, and widespread integration into 171 

GIS software. A disadvantage is that the output is a “possibility,” which is not strictly comparable to the 172 

probabilities generated by classical statistics. The heuristic fuzzy approach also enforces transparency, because all of 173 

the transformation functions are defined in advance. Unlike some machine-learning models, the hypothesis 174 

represented by the fuzzy overlay model must comport with prior knowledge, not just fit the data. This advantage is 175 

particularly important for landslide inventories that are known to have significant spatial biases.  176 

Applying fuzzy logic within a GIS requires two distinct steps (Bonham-Carter 1994). In the first step, a fuzzy 177 

membership function is assigned for each variable. This function serves to transform the values of the explanatory 178 

variable to a range between zero and one. The transformation should reflect the relationship between the variable 179 

and landslide susceptibility. For example, slope was assigned the “large” function available in ArcGIS 10.2 (ESRI 180 

2013) to represent the fact that susceptibility grows quickly between 10-degree and 30-degree slopes. The second 181 

step in fuzzy overlay is to combine the fuzzy membership values with a fuzzy operator such as “fuzzy and” or 182 

“fuzzy or”. In this study, all variables other than slope were combined with the fuzzy gamma operator: 183 

𝜇 = (1 − ∏(1 − 𝜇𝑖

𝑛

𝑖=1

))𝛾 × (∏ 𝜇𝑖

𝑛

𝑖=1

)1−𝛾   185 

( 1 ) 184 

where μ is the possibility that a pixel is susceptible to landslides, n is the number of variables to be combined, μ i is 186 

the possibility that a landslide will occur given the value of the variable i, and γ is the parameter that controls 187 

whether μ is closer to the largest or smallest μi. In order to determine an appropriate value of gamma, it was varied 188 
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between 0 to 1 at intervals of 0.1. Each version of the global map was assessed, as described below. Finally, slope 189 

was introduced through a product function to ensure that no flat terrain would be given high susceptibility values 190 

(Figure 2). The use of slope gradient as a critical predictor means that the landslide susceptibility map should 191 

provide more information on mass movements that require a minimum gradient, such as rock falls and debris flows, 192 

than on low-angle movements such as lateral spreads. 193 

 194 

Figure 2: The fuzzy overlay model combined data on bedrock, faults, forests, and roads with fuzzy gamma operator, where 195 
gamma = 0.9. Then slope was introduced with a product function to ensure that no flat ground was identified as highly 196 
susceptible. Ovals indicate data, while rectangles with the hammer symbol indicate tools from ArcGIS 10.2 Spatial Analyst. 197 

In order to aid interpretation of the global landslide susceptibility map, the susceptibility values output by the fuzzy 198 

overlay model were classified into five categories: Very Low, Low, Moderate, High, and Very High. The classes 199 

were divided at the following fuzzy susceptibility values: 0.11, 0.49, 0.671, 0.75. This classification scheme was 200 

designed so that each category was twice as large as the next highest, e.g. the Very Low category contains roughly 201 

twice as many pixels as the Low category. The decreasing category sizes should enable the user to focus efforts 202 

upon the most susceptible areas. While much of the world is somewhat susceptible, only 3% is very highly 203 

susceptible. Hazards in this relatively small area may be studied or remediated with greater intensity. Figure 3 shows 204 

the proportion of GLC locations in each susceptibility category.  205 
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 206 

Figure 3: Distribution of susceptibility for the locations recorded in the GLC (red) and for other areas (blue). The classes were 207 
divided at the following fuzzy susceptibility values: 0.11, 0.49, 0.67, 0.75. 208 

Receiver operating characteristic (ROC) curves are commonly used to evaluate the performance of binary 209 

classifiers, i.e. tests that divide inputs into two outcomes (Zweig and Campbell 1993). Since landslide inventories 210 

are rarely complete, some locations are likely to contain unreported landslides. This is especially true for the current 211 

study area, where landslides have been recorded in less than 1% of the map’s pixels. Thus, ROC analysis will give 212 

only a rough guide to map performance, and other aspects of a landslide susceptibility map should also be 213 

considered. ROC curves were created for each of the landslide inventories described in Table 4 by calculating the 214 

number of historical landslides predicted by each possible susceptibility threshold (true positive rate) and the 215 

number of pixels above each susceptibility threshold (false positive rate).  216 

A preliminary ROC analysis indicated that low gamma values generated a susceptibility map with a better fit to the 217 

GLC. However, inspection of the resulting maps showed that the low-gamma maps were dominated by the linear 218 

inputs, faults and roads. In contrast, the high-gamma maps identified broad regions of hazardous terrain. This 219 

discrepancy between quantitative and qualitative results can be explained by the fact that many events reported in 220 

the GLC are associated with road closures, leading to a false level of confidence in low-gamma maps that emphasize 221 

this feature. Because no single factor (other than slope, which was overlaid separately) is necessary for a landslide to 222 

occur, gamma was assigned a value of 0.9, which is consistent with the high values published in several previous 223 

studies (Tangestani 2004; Champati ray et al. 2007; Srivastava et al. 2010; Pradhan 2011; Alvalá et al. 2013; Ahmed 224 

et al. 2014). 225 
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4. Results 226 

The landslide susceptibility map is intended to enhance situational awareness with a consistent global picture of 227 

mass movements.  The map covers the Earth’s land surface from 56 south to 72 north latitude (Figure 4). Each 228 

continent evaluated has susceptible areas, but the major mountain chains (Himalayan Arc, Andes, Alps, and Pacific 229 

Rim) dominate the map.  230 

 231 

Figure 4: Global susceptibility map developed using a fuzzy overlay model.  232 

In order to assess the map’s performance, area under the ROC curve (AUC) was calculated for each landslide 233 

inventory. Both classified (5 susceptibility categories) and unclassified (continuous susceptibility values) maps were 234 

analyzed to identify any loss of information from classification of the model output into discrete bins (Table 5). 235 

Uncertainty from spatial error in the inventories was not analyzed, but only GLC points with an estimated accuracy 236 

better than one kilometer were used. The AUC for the GLC was 0.82, which indicates a relatively successful 237 

classification of terrain (Hosmer and Lemeshow 2005; Beguería 2006). Local performance of the global 238 

susceptibility map ranged from very good (Nicaragua) to poor (Badakhshan) (Table 5). Local landslide inventories 239 

are typically produced for landslide hotspots. In the context of a global map, the entire study area may be highly 240 

susceptible. As a result, a global classification may place nearly all pixels in one category, giving the appearance of 241 

randomness in the ROC. AUC values calculated for the classified map were no more than 0.03 lower than for the 242 

unclassified fuzzy product, which suggests that the classification process preserved most of the available 243 

information. 244 

Table 5: The performance of the global susceptibility map was analyzed with eight local landslide inventories. Performance 245 
appears to depend upon the specific events recorded in each inventory, not upon the size, terrain, or climate of the study area.  246 

Inventory AUC 

Study Area Unclassified Classified 

Global 0.85 0.82 

Badakhshan, Afghanistan 0.61 0.59 

El Salvador 0.7 0.69 
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Eastern Guatemala 0.7 0.69 

Italy 0.66 0.65 

Koshi Basin, Nepal-India-China 0.84 0.82 

Nicaragua 0.85 0.83 

Oregon, USA 0.75 0.74 

Utah, USA 0.82 0.81 

5. Comparison with previous small-scale maps 247 

The new global landslide susceptibility map resembles previous publications, both in methods and results. Landslide 248 

hotspots were identified by Nadim et al. (2006) in many of the same locations that the current study finds highly or 249 

very highly susceptible. However, the new map identifies a much larger portion of the world’s surface as highly 250 

susceptible than was shown as highly hazardous in the map of landslide and avalanche hotspots. The difference is 251 

probably due to the use of a classification system that relies upon “approximate annual frequency” in the prior work. 252 

The current study identifies some additional large areas as hotspots, including the Appalachian Mountains in the 253 

eastern United States, eastern Brazil, and Madagascar, which were previously classified as “negligible to very low”. 254 

This difference is important because many landslides, including fatal ones, have occurred in places like West 255 

Virginia, Minas Gerais, and Orissa. The new map also has much in common with the previous global landslide 256 

susceptibility map by (Hong et al. 2007), including large hotspots in the Andes, Himalaya, and eastern Brazil. The 257 

most notable differences are the relatively low susceptibility ratings assigned to Indonesia, the Philippines, and New 258 

Zealand by the earlier map. The distribution of categories differs between the maps, with more pixels rated 259 

moderately susceptible in the map by Hong et al., and more pixels rated very low in the newer map. The significance 260 

of this is that very few areas can be excluded from future analysis on the basis of the older map, whereas the new 261 

global map can be used to exclude a majority of the Earth’s land surface from more detailed study. The spatial 262 

distribution of fatal landslides (Petley 2012) mostly confirms the patterns seen in all three global maps. Highly rated 263 

areas with few fatal landslides, such as the Southern Andes and the Canadian Rockies, tend to be sparsely populated, 264 

resulting in fewer reported fatalities.  265 

The landslide susceptibility map of Central America and the Caribbean region (Kirschbaum et al. 2015a) should be 266 

very similar to the global map, despite slight differences in methods and data inputs. Since the maps were produced 267 

at the same resolution (thirty arcseconds) and with the same number of categories (five), quantitative comparisons 268 

were not difficult. First, the susceptibility classes were assigned a numerical value from 1 (very low) to 5 (very 269 

high). Then the map of the Caribbean was subtracted from the global map. The global susceptibility ratings were 270 

equal to or greater than the prior ratings in almost all locations (Figure 5). This is attributed to the fact that Central 271 

America is a landslide hotspot (Nadim et al. 2006; Petley 2012; Kirschbaum et al. 2015b). While any given location 272 

within the region may be relatively less susceptible than other Central American locations, it may be relatively more 273 

susceptible than the Earth as a whole. This tendency was also seen in the susceptibility maps associated with the 274 
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local inventories described above (Table 4). The handful of locations where the Caribbean map indicates higher 275 

susceptibility are probably due to the use of an older slope database (Verdin et al. 2007). 276 

 277 

Figure 5: This figure shows the relationship between the global landslide susceptibility map and the maps of Europe and the 278 
Caribbean. The global map often classified terrain as one category higher than the Caribbean map, but the majority of sites were 279 
identical in both maps. Less than 1% of the study area was classified higher by the Caribbean map. The global map exhibited a 280 
lower rate of agreement with the European map. In this case, the distribution of higher and lower values was more even. In both 281 
cases, the number of large differences between global and regional susceptibility classes was quite small. 282 

The new global map can also be compared to the landslide hazard maps of Indonesia (Cepeda 2010), which have 283 

four hazard classes. The hazard map for precipitation-triggered landslides shows the highest hazard in southwestern 284 

Sulawesi and western Sumatra, with the lowest hazard in eastern Sumatra and southern Borneo. The hazard map for 285 

earthquake-triggered landslides shows the highest hazard in western Sumatra, Morotai, and the mountains of Papua, 286 

with the lowest hazard in eastern Sumatra and Borneo. Although it has been subdivided into seismic and 287 

meteorological components, this is roughly the same pattern seen in its predecessor, the global map of landslide 288 

hotspots (Nadim et al. 2006). The new global map identifies the same locations as highly hazardous, but extends the 289 

high and very high classes over much of Indonesia, including eastern Sulawesi and many smaller islands (Figure 6). 290 

Interestingly, both maps portray Java as less hazardous than its neighbors, despite the preponderance of reported 291 

landslides. This is probably due to population biases in the landslide inventories, but it might indicate the influence 292 

of anthropogenic terrain modification on landslide rates.  293 
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 294 

Figure 6: Fuzzy landslide susceptibility in Indonesia 295 

Comparison with the European map (Günther et al. 2014) revealed large regional differences (Figure 7). In 296 

particular, the European map shows higher susceptibility in Italy, Ireland, and the United Kingdom, while the global 297 

map shows higher susceptibility in Iberia and the Carpathians. The global map shows higher overall susceptibility, 298 

which would be expected if Europe were more prone to landslides than the Earth as a whole. Using the European 299 

map as a benchmark, the deviation by class is Very Low: 80%, Low: -56%, Moderate: -28%, High: 57%, Very 300 

High: -17% (Figure 5). It is interesting to note that although the methods for defining susceptibility classes were 301 

quite different, the overall distribution of European land among classes resembles the global map as a whole. The 302 

same is not true of landslides (Figure 3); the better validation of the European susceptibility model can be attributed 303 

to the use of better lithological data, larger and more spatially precise landslide inventories, and a more 304 

homogeneous study area. Nevertheless, the European map largely confirms the output of the global susceptibility 305 

model. Less than 0.2% of the map showed a difference of 4 classes (e.g.: a complete inversion from very low to very 306 

high), less than 2% of the map showed a difference of 3 or more classes, and less than 11% of the map showed a 307 

difference of 2 or more classes. In other words, there was no difference in 45% of the pixels, and the maps differed 308 

by a single class in another 45% of the pixels.  309 
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 310 

Figure 7: The new global landslide susceptibility map and the European map (Günther et al., 2014) were assigned integer values 311 
from 1 (very low susceptibility) to 5 (very high). The European map was then subtracted from the global map, so positive values 312 
indicate areas where the global map has higher susceptibility and negative indicates where the European map is higher. 313 
Numerous differences between the global and European landslide susceptibility maps can be seen. The European map exceeds 314 
the global map over large portions of Great Britain and Ireland (brown). The global map shows higher landslide susceptibility in 315 
most of Portugal and Spain (purple).  316 



17 

 

This comparison suggests that maps produced with different methods, data, and scope may show largely similar 317 

results. However, maps focused on specific landslide hotspots are not directly comparable to broader overviews 318 

unless a single, rigorous classification method was applied to both maps.  319 

6. Discussion 320 

While comparison to previous small-scale maps revealed strong similarities, this global landslide susceptibility map 321 

improves upon prior maps in four important ways. First, several new or updated datasets have been released in the 322 

last decade. In the current context, the most important of these is a DEM made with high-quality SRTM void-filling 323 

techniques. Second, the use of a conservative method for aggregating 90-meter slope values means that all major 324 

topographic features were considered by this analysis. Third, the use of fuzzy overlay preserves the full information 325 

content of continuous variables like slope gradient. Fourth, the simple classification scheme will be familiar to users 326 

of other susceptibility maps, but the uneven pixel distribution should draw the user’s attention to the most critical 327 

sites.  328 

Nevertheless, several features of the new map may limit its use. First, the resolution of the map is approximately one 329 

kilometer, and terrain varies significantly within many pixels. The choice to aggregate slope by computing the 330 

maximum value means that some pixels may contain a very small area of steep terrain, while the remainder is not 331 

susceptible to landslides. Second, the use of biased and incomplete landslide inventories to evaluate the 332 

susceptibility map makes the results more difficult to interpret. Although this susceptibility model (Figure 2) was not 333 

fitted empirically, landslide inventories informed the prior research on which it was based. Third, the Geological 334 

Map of the World is only appropriate for use over very large areas. At local and national scales, more detailed 335 

information is often available, but varies in quality, format, and cost. Fourth, this map models all mass movements 336 

with the same treatment. The real world is more complex, and factors which drive rock toppling in Canada are not 337 

the same as those which can cause debris flows in New Guinea. Fifth, this map does not provide an explicit hazard 338 

level in the form of an annual probability of slope failure. Therefore, it is very likely that landslides will occur at 339 

some date in all of the very highly susceptible locations, but the size, frequency, and timing of those events are not 340 

known. These limitations suggest that the global susceptibility map is best used for a few purposes: situational 341 

awareness of global landslide hotspots and potential occurrence, the development of global decision support 342 

systems, and prioritization of future landslide research. It is not appropriate for decisions about infrastructure design, 343 

building code legislation, or local land-use planning.  344 

Excerpts from this landslide susceptibility map have already been used during the period leading up to potential 345 

disasters. In one such instance, the approach of Hurricane Madeline toward the Hawaiian Islands triggered a request 346 

for information on the potential for landslides. Although the global map is not tailored specifically to this location, it 347 

was still the most relevant and detailed dataset available to decision makers. This map has also been applied as one 348 

component of a global landslide nowcast system (Kirschbaum and Stanley 2016). The nowcasts are issued at two 349 

levels, high-hazard and moderate-hazard, which correspond to different classes of the global susceptibility map. 350 

After considering susceptibility, a 7-day antecedent rainfall index is compared to historical precipitation levels to 351 
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identify hazardous locations in nearly real time. While this system focuses upon rain, other landslide triggers, such 352 

as melting snow or recent seismicity, could be considered in similar models.  353 

7. Conclusions 354 

This research assessed landslide susceptibility at a resolution of approximately one kilometer with nearly global 355 

coverage. The map was evaluated with one global landslide catalog and several local to regional landslide 356 

inventories. The geographic distribution of landslide susceptibility is very similar to that in previous small-scale 357 

maps, with the most dangerous terrain located around the Pacific Rim and along the Himalayan Mountains. Other 358 

hotspots can be found in Europe, Africa and the Americas. While this map benefited from several excellent and free 359 

datasets, further improvements to thematic data, particularly in soil mapping of mountain regions and landslide 360 

cataloguing, would improve the results of any future work. The global susceptibility map might be improved by 361 

incorporation of any future in-situ and satellite-based datasets with improved resolution, accuracy, or completeness.  362 

The map may be useful for long-term risk assessment and disaster response planning, as well as in the development 363 

of real-time hazard models.  364 

  365 
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